ИД Интеллект Математические основы вычислительной механики жидкости, газа и плазмы
Нет в продаже

Механика жидкости, газа и плазмы - обширная область современной науки - существует по крайней мере со времён Архимеда и интенсивно продолжает развиваться в наши дни. Интерес к этой области легко объяснить разнообразными и необходимыми приложениями к навигации, воздухоплаванию, добыче и транспортировке энергоресурсов, а в последнее время к решению проблем атомной физики и управляемого термоядерного синтеза, освоения космоса, то есть к актуальным вопросам научно-технического прогресса, относящимся к развитию энергетики, транспорта и созданию новых видов техники, в том числе крайне необходимой оборонной техники. К этому следует добавить чисто научные, а не исключено, что в недалёком будущем и прикладные, интересы к проблемам астрофизики.Задачи механики содержат большой объём количественной информации и требуют установления в ней закономерностей. По этой причине механика тесно соприкасается и переплетается с другой, тоже древнейшей, наукой - математикой, вплоть до того, что часто употребляемые термины`механико-математические` и`физико-математические` воспринимаются как единые неразрывные понятия. Иными словами, рабочим языком механики являются математические термины, уравнения, правила и т.п. В частности, современный язык механики жидкости и газа - гидромеханика, точнее, уравнения гидродинамики и газодинамики введён в употребление в XVIII веке Эйлером и Даниилом Бернулли, а уравнения магнитной газо- и гидродинамики, базирующиеся на той же гидромеханике, работах Ампера и уравнениях Максвелла, - шведским физиком Х. Альфвеном в середине ХХ века. В результате основной математический аппарат механики жидкости, газа и плазмы состоит из дифференциальных уравнений с частными производными, нелинейными (точнее, квазилинейными), что существенно отличает их от традиционных линейных уравнений математической физики, изучаемых в университетах и технических вузах. Задачи с уравнениями механики практически во всех случаях не имеют явных так называемых аналитических точных решений. Тем не менее, потребность в их решении со временем быстро возрастает, поскольку оно облегчает и расширяет возможности теоретических исследований и позволяет сэкономить на громоздких дорогостоящих, а иногда и принципиально невозможных экспериментах. Выход из положения может быть только в том, чтобы решать задачи приближенно. Практика такого решения возникла в середине ХХ века и широко распространилась в науке и технике. Она потребовала численных методов решения задач с уравнениями в частных производных, создание и исследование которых определили современное состояние вычислительной математики. Необходимость выполнять огромное число утомительных однотипных вычислений вызвала к жизни создание электронно-вычислительных машин (ЭВМ), немыслимая ранее производительность которых продолжает расти. Применение новой техники привело к созданию ещё одного нового направления работ - составлению программ и умению проводить громоздкие расчёты с их помощью, причем требования к программам повышаются по мере увеличения быстродействия вычислительных средств. Приближённое решение математических задач, связанных с научными и техническими проблемами, называют в настоящее время математическим моделированием. Это понятие включает в себя несколько этапов: чёткое понимание цели исследования в терминах исходной проблемы; грамотную постановку задачи в терминах механики и её математического аппарата; создание или выбор из числа известных численного метода приближённого решения задачи; программирование с учётом возможностей вычислительной техники; проведение расчётов или серии расчётов (`вычислительных экспериментов`) с разными значениями параметров задачи; обработку и анализ результатов расчётов с точки зрения первоначально поставленной цели. Отсюда следует, что современный специалист в области математического моделирования должен по крайней мере быть в курсе и правильно ориентироваться во всех перечис

Где купить ?

Товар отсутствует в продаже в магазинах системы.